Maximum likelihood analysis of a general latent variable model with hierarchically mixed data.
نویسندگان
چکیده
A general two-level latent variable model is developed to provide a comprehensive framework for model comparison of various submodels. Nonlinear relationships among the latent variables in the structural equations at both levels, as well as the effects of fixed covariates in the measurement and structural equations at both levels, can be analyzed within the framework. Moreover, the methodology can be applied to hierarchically mixed continuous, dichotomous, and polytomous data. A Monte Carlo EM algorithm is implemented to produce the maximum likelihood estimate. The E-step is completed by approximating the conditional expectations through observations that are simulated by Markov chain Monte Carlo methods, while the M-step is completed by conditional maximization. A procedure is proposed for computing the complicated observed-data log likelihood and the BIC for model comparison. The methods are illustrated by using a real data set.
منابع مشابه
Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملMaximum likelihood fitting of acyclic directed mixed graphs to binary data
Acyclic directed mixed graphs, also known as semi-Markov models represent the conditional independence structure induced on an observed margin by a DAG model with latent variables. In this paper we present the first method for fitting these models to binary data using maximum likelihood estimation.
متن کاملVariational Bayesian Independent Component Analysis
Blind separation of signals through the info-max algorithm may be viewed as maximum likelihood learning in a latent variable model. In this paper we present an alternative approach to maximum likelihood learning in these models, namely Bayesian inference. It has already been shown how Bayesian inference can be applied to determine latent dimensionality in principal component analysis models (Bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2004